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Abstract

Many linear viscoelastic materials show constitutive behavior involving fractional order derivatives.
Linear, time invariant systems without memory have exponential decay in time but, contradictorily, not the
power law decay associated with fractional derivatives. The physics literature has noted that apparently-
non-exponential decays can be observed when several simultaneously decaying processes have closely
spaced exponential decay rates. Many engineer–researchers interested in viscoelastic damping, however,
seem unaware of these observations. In this letter I give an unoriginal explanation, but with a fresh
engineering flavor, for the appearance of these fractional order derivatives. By this explanation, fractional
order damping can be expected from many materials with sufficiently disordered dissipation mechanisms.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The aim of this letter is to interpret a puzzle from linear viscoelasticity in light of some results
obtained in the physics literature [1–3]. In particular, I offer an unoriginal but more informal
explanation, with a fresh engineering flavor, for the appearance of fractional order derivatives in
the constitutive relations of linear viscoelastic materials.

Many linear viscoelastic damping materials exhibit a macroscopic constitutive behavior
involving fractional order derivatives (see Refs. [4,5] and references therein). Such behavior has
been the subject of many investigations (for a representative sample, see Refs. [6–10]).
see front matter r 2004 Elsevier Ltd. All rights reserved.
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The fractional derivative of a function xðtÞ; assuming xðtÞ � 0 for to0; is (adopting the
Riemann–Liouville definition used by Bagley and Torvik [4]; for a fuller treatment see Ref. [11])

D1�a½xðtÞ� ¼
1

GðaÞ
d

dt

Z t

0

xðtÞ

ðt � tÞ1�a dt; 0oao1;

where G represents the gamma function. Observe that

1

GðaÞ
d

dt

Z t

0

t�a
þ

ðt � tÞ1�a dt ¼
p

sin paGðaÞ
dðtÞ;

where dðtÞ is the Dirac delta function, and where tþ ¼ t if t40 and tþ ¼ 0 otherwise. So, if a
system obeys

D1�a½xðtÞ� ¼ hðtÞ (1)

and has initial conditions xðtÞ � 0 for tp0; and if hðtÞ is an impulse at zero, then xðtÞ ¼ Ct�a for
t40 and some constant C (power law decay to zero).

A general constitutive relation used for many viscoelastic materials involves fractional order
derivatives of both stress and strain, and in the one-dimensional case is

sðtÞ þ bDa1 ½sðtÞ� ¼ E0�ðtÞ þ E1Da2 ½�ðtÞ�;

where s is stress, � is strain, and there are five fitted parameters on which there are some
thermodynamic constraints (such as a1 ¼ a2; for example; see Refs. [5,9]). Some authors (e.g.,
Refs. [6,7]) use the simpler

sðtÞ ¼ E0�ðtÞ þ E1Da½�ðtÞ�:

In the above, the high-frequency behavior is dominated by the E1 term in comparison with the E0;
and for that regime we may use as an approximation

sðtÞ ¼ E1Da½�ðtÞ�: (2)

The above simplification is inessential, but clarifies the presentation. Readers unconvinced by the
simplification may note that Eq. (2) has, in its own right, been studied as an ‘‘isolated fractional
dashpot.’’ By Eq. (1), the strain in a piece of material obeying Eq. (2) can have power law decay in
time. That power law is the key to the appearance of fractional derivatives in the mathematical
description of constitutive behavior.
2. Internal variables

In fractional order damping, the stress at a point depends explicitly on the strain history. The
continuum material point has noninfinitesimal memory (unlike the infinitesimal memory needed
for integer order derivatives in, e.g., Newtonian viscosity). This apparent memory must be due to
the net effect of unmonitored internal processes which could, in principle, be incorporated in a
larger model with internal variables but without noninfinitesimal memory. For example, consider
the spring-dashpot system in Fig. 1. Point P is held fixed, R is an internal point, and force F acts
on Q. L1 and L2 are constants such that, at equilibrium with F � 0; x1 ¼ x2 ¼ 0: The two variable
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Fig. 1. A model with an internal variable.
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model does not involve history explicitly. The governing equations are

F ¼ k1x1 þ k2x2; (3)

cð _x1 � _x2Þ ¼ k2x2: (4)

Now let x2 be an unmonitored internal variable. Let us relate F and x1: On starting from
equilibrium (x1 ¼ x2 ¼ 0) at t ¼ 0; Eq. (4) gives x2ðtÞ; which by Eq. (3) gives

F ¼ ðk1 þ k2Þx1 �
k2
2

c

Z t

0

x1ðtÞe�k2ðt�tÞ=c dt: (5)

Thus, elimination of the hidden variable leads to a constitutive relation explicitly involving
noninfinitesimal history.
3. Fractional order power laws

So far, all is straightforward. The puzzle of fractional order viscoelasticity is the source of the
power law kernel (instead of an exponential one like in Eq. (5)) in the integral of history. The
power law kernel is closely related to power law decay in solutions, as discussed above. Strictly
speaking, fractionally damped materials involve Mittag–Leffler functions, and the associated
kernels have sums of many powers instead of a single power law; however, for simplicity, we
retain the single power law.

Linear constant-coefficient systems of differential equations have solution components that
decay like exponentials, possibly multiplied by polynomials, but not like t�a: Where does the t�a

come from? I offer an informal explanation here for the existence of solutions like t�a in randomly
chosen systems relevant to viscoelastic damping. The mathematical solutions obtained below are
not tied to the material specific physics of any particular substance. Fractional order derivatives
may thus arise from microstructural mechanisms of energy dissipation which, while disordered,
are less remarkable than previous discussions might suggest. As I stated earlier, my results are not
new; I am simply trying to reach a different audience from that of Refs. [1–3].

Consider the model sketched in Fig. 2. An elastic rod of length L has a distributed stiffness
bðxÞ40: Its axial displacement is uðx; tÞ: The internal force at x is bðxÞ ux; and interaction with
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Fig. 2. One-dimensional viscoelastic model.
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neighboring material causes viscous forces cðxÞut; with cðxÞ40 and with x and t subscripts
denoting partial derivatives. The free end of the rod is displaced, held for some time, and released.
Subsequent motion obeys

ðbðxÞuxÞx � cðxÞut ¼ 0: (6)

The boundary conditions are uð0; tÞ ¼ 0 and uxðL; tÞ ¼ 0: A solution is sought in the form

uðx; tÞ ¼
Xn

i¼1

aiðtÞfiðxÞ;

where large n gives accuracy, the aiðtÞ are to be found, and the fiðxÞ form a chosen basis and
satisfy fið0Þ ¼ 0: Discretized equations can be obtained using the method of weighted residuals
[12]. Defining symmetric positive definite matrices B and C by Bij ¼

R L

0 bfi;x fj;x dx and Cij ¼R L

0 cfi fj dx; and writing a for the vector of coefficients aiðtÞ; we obtain

C _a ¼ �Ba:

On suitable choice of fi; C is the identity matrix. Then

_a ¼ �Ba:

In the presence of sufficiently complicated microstructural behavior, the functions cðxÞ and/or
bðxÞ might usefully be treated as random, making B random as well.

Let us study a random B. Begin with A, an n 	 n matrix, with n large. Let the elements of A be
random, i.i.d. uniformly in ð�0:5; 0:5Þ: Let B ¼ ATA: B is symmetric positive definite with
probability one. We will solve

_x ¼ �Bx: (7)

Solution is done numerically using, for initial conditions, a random n 	 1 column matrix x0 whose
elements are i.i.d. uniformly in ð�0:5; 0:5Þ: The process is repeated 30 times, with a new B and x0

each time. The results, for n ¼ 400; are shown in Fig. 3. The solutions, though they are sums of
exponentials, decay on average like t�1=4: Why?

The explanation lies in the eigenvalues of B. The spectra of random matrices comprise a subject
in their own right. Here, I require a simple result that numerics can provide. Let n ¼ 250: I take a
random n 	 n matrix B as above. Let lk; k ¼ 1; 2; . . . ; n; be its eigenvalues in increasing order.
Fig. 4 shows

ffiffiffiffiffiffiffiffiffiffi
lk=n

p
plotted against k=n: Superimposed are the same quantities for n ¼ 400:
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Fig. 3. Left: norm(x) ¼
ffiffiffiffiffiffiffiffi
xTx

p
against time. Thirty individual solutions (thin lines) as well as their rms values (thick

gray). Right: rms value of norm(x) against time is a straight line on a loglog scale. A fitted line has slope �0:24 
 �1=4:
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Fig. 4. Eigenvalues of B for n ¼ 250 and 400.
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The coincidence between plots indicates a single underlying curve as n ! 1: That curve passes
through the origin, and can be taken as linear if we restrict our attention to, say, the smallest 60%
of the eigenvalues. Since the larger 40% correspond to rapid exponential decay, I use a linear
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approximation for all eigenvalues but restrict time to values tbOð1=nÞ; in which range solution
components from the large eigenvalues have decayed to negligible values. By this approximationffiffiffiffiffi

lk

n

r
¼ b

k

n
(8)

for some positive constant b: For simplicity, I ignore the statistical variation of eigenvalues
around the fit of Eq. (8).

The solution for the ith element of x is of the form

xiðtÞ ¼
Xn

k¼1

aike
�lkt ¼

Xn

k¼1

aike
�b2k2t=n; (9)

where the coefficients aik; by randomness of x0 and B and orthonormality of eigenvectors of the
latter, are taken as random, i.i.d., and with zero expected value. The variance

varðxiðtÞÞ ¼
Xn

k¼1

varðaikÞe
�2b2k2t=n:

By scaling the initial condition x0 suitably, we can write

varðaikÞ ¼
1

n
ffiffiffi
n

p ;

independent of t and k, to obtain

varðxiðtÞÞ ¼
1

n

ffiffiffiffiffiffiffiffiffi
2b2t

q Xn

k¼1

ffiffiffiffiffiffiffiffiffi
2b2t

n

s
e�2b2k2t=n:

Define x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2t=n

q
k: Assuming b2t5n and nb1; the sum can be approximated by an integral.

Then

varðxiðtÞÞ ¼
1

n
ffiffiffiffiffiffiffiffi
2c2t

p

Z 1

0

e�x2 dx ¼
C2

n
ffiffi
t

p

for some C. Finally, RMSð
ffiffiffiffiffiffiffiffi
xTx

p
Þ is (using independence of the components of x)

RMSðxTxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

varðxiðtÞÞ

s
¼

C

t1=4
; (10)

which explains the numerical result. Eventually, for t sufficiently large, the approximation fails.
Only exponential decay controlled by the smallest eigenvalue remains. In experiments, the
response may by then be too small to measure.

An aside on optimization. The simplest method is steepest descents, the continuous version of
which has the form of Eq. (7). Textbooks mention the poor performance of this method for large
practical problems. The power law convergence seen here gives an example of how poor that
performance can be.
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